Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Cancer Prevention ; : 107-107, 2018.
Article in English | WPRIM | ID: wpr-740096

ABSTRACT

The original version of this article contained error in the URL of the SUPPLEMENTARY MATERIALS.

2.
Journal of Cancer Prevention ; : 1-9, 2018.
Article in English | WPRIM | ID: wpr-740095

ABSTRACT

BACKGROUND: Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. METHODS: We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. RESULTS: In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. CONCLUSIONS: These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers.


Subject(s)
Humans , Breast Neoplasms , Cell Line , Cell Movement , Epithelial-Mesenchymal Transition , Lung , Neoplasm Metastasis , Pancreatic Neoplasms , Phosphorylation , Phosphotransferases , Prostatic Neoplasms , Sequence Analysis, RNA
3.
Journal of Cancer Prevention ; : 147-158, 2017.
Article in English | WPRIM | ID: wpr-226321

ABSTRACT

BACKGROUND: Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. METHODS: We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. RESULTS: We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. CONCLUSIONS: Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity.


Subject(s)
Animals , Mice , Adipose Tissue, White , Diet , Gene Expression , Gene Regulatory Networks , Glucose , Hypothalamus , Liver , Lymphocyte Activation , Medicine, Traditional , Metabolism , Obesity , Sequence Analysis, RNA , Tea , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL